Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ecol Evol ; 13(10): e10545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780086

RESUMO

Geobotanical subdivision of landcover is a baseline for many studies. The High-Low Arctic boundary is considered to be of fundamental natural importance. The wide application of different delimitation schemes in various ecological studies and climatic scenarios raises the following questions: (i) What are the common criteria to define the High and Low Arctic? (ii) Could human impact significantly change the distribution of the delimitation criteria? (iii) Is the widely accepted temperature criterion still relevant given ongoing climate change? and (iv) Could we locate the High-Low Arctic boundary by mapping these criteria derived from modern open remote sensing and climatic data? Researchers rely on common criteria for geobotanical delimitation of the Arctic. Unified circumpolar criteria are based on the structure of vegetation cover and climate, while regional specifics are reflected in the floral composition. However, the published delimitation schemes vary greatly. The disagreement in the location of geobotanical boundaries across the studies manifests in poorly comparable results. While maintaining the common principles of geobotanical subdivision, we derived the boundary between the High and Low Arctic using the most up-to-date field data and modern techniques: species distribution modeling, radar, thermal and optical satellite imagery processing, and climatic data analysis. The position of the High-Low Arctic boundary in Western Siberia was clarified and mapped. The new boundary is located 50-100 km further north compared to all the previously presented ones. Long-term anthropogenic press contributes to a change in the vegetation structure but does not noticeably affect key species ranges. A previously specified climatic criterion for the High-Low Arctic boundary accepted in scientific literature has not coincided with the boundary in Western Siberia for over 70 years. The High-Low Arctic boundary is distinctly reflected in biodiversity distribution. The presented approach is appropriate for accurate mapping of the High-Low Arctic boundary in the circumpolar extent.

2.
Biodivers Data J ; 10: e78666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35095300

RESUMO

BACKGROUND: The dataset providing information on the geographic distribution of Oxytropis species on the territory of Asian Russia is discussed. The data were extracted from different sources including prominent floras and check-lists, Red Data books, published research on congeneric species and authors' field observations and mainly cover less-studied, remote regions of Russia. The dataset should be of value to applied, basic and theoretical plant biologists and ecologists interested in the Oxytropis species. NEW INFORMATION: The dataset includes 5172 distribution records for 143 species and 15 subspecies of genus Oxytropis DC. (Fabaceae Lindl.) in Asian Russia. The dataset fills gaps in the distribution of locoweeds in the study area and contains precise coordinates for many of rare and endemic species.

3.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
4.
Biodivers Data J ; 8: e59249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244292

RESUMO

BACKGROUND: The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people were involved in the data collection. NEW INFORMATION: Within 20 months, the participants accumulated 750,143 photo observations of 6,857 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country's biodiversity and a leading source of data on the current state of the national flora. About 87% of all project data, i.e. 652,285 observations, are available under free licences (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...